Exercise 3.3.17

Consider

$$
\int_{0}^{1} \frac{d x}{x^{2}+1}
$$

(a) Evaluate explicitly.
(b) Use the Taylor series of $1 /\left(1+x^{2}\right)$ (itself a geometric series) to obtain an infinite series for the integral.
(c) Equate part (a) to part (b) in order to derive a formula for π.

Solution

Make the trigonometric substitution,

$$
\begin{aligned}
x & =\tan \theta \\
d x & =\sec ^{2} \theta d \theta .
\end{aligned}
$$

The integral then becomes

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{x^{2}+1} & =\int_{\tan ^{-1}(0)}^{\tan ^{-1}(1)} \frac{\sec ^{2} \theta d \theta}{(\tan \theta)^{2}+1} \\
& =\int_{0}^{\pi / 4} \frac{\sec ^{2} \theta d \theta}{\sec ^{2} \theta} \\
& =\int_{0}^{\pi / 4} d \theta \\
& =\frac{\pi}{4}
\end{aligned}
$$

Since the integrand can be written as an infinite series,

$$
\frac{1}{x^{2}+1}=\frac{1}{1-\left(-x^{2}\right)}=\sum_{n=0}^{\infty}\left(-x^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

the integral can also be written as

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{x^{2}+1} & =\int_{0}^{1} \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} d x \\
& =\sum_{n=0}^{\infty}(-1)^{n} \int_{0}^{1} x^{2 n} d x \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{2 n+1}\right)
\end{aligned}
$$

Therefore,

$$
\frac{\pi}{4}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
$$

